[kaffe] CVS kaffe (dalibor): Removed pure-java math dir, too.

Kaffe CVS cvs-commits at kaffe.org
Sun Jul 18 11:38:15 PDT 2004


PatchSet 4985 
Date: 2004/07/18 18:31:02
Author: dalibor
Branch: HEAD
Tag: (none) 
Log:
Removed pure-java math dir, too.

Members: 
	libraries/javalib/pure-java/math/gnu/java/math/MPN.java:1.1->1.2(DEAD) 
	libraries/javalib/pure-java/math/java/math/BigDecimal.java:1.4->1.5(DEAD) 
	libraries/javalib/pure-java/math/java/math/BigInteger.java:1.3->1.4(DEAD) 

===================================================================
Checking out kaffe/libraries/javalib/pure-java/math/gnu/java/math/MPN.java
RCS:  /home/cvs/kaffe/kaffe/libraries/javalib/pure-java/math/gnu/java/math/Attic/MPN.java,v
VERS: 1.1
***************
--- kaffe/libraries/javalib/pure-java/math/gnu/java/math/MPN.java	Sun Jul 18 18:38:13 2004
+++ /dev/null	Sun Aug  4 19:57:58 2002
@@ -1,768 +0,0 @@
-/* gnu.java.math.MPN
-   Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
-
-This file is part of GNU Classpath.
-
-GNU Classpath is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
- 
-GNU Classpath is distributed in the hope that it will be useful, but
-WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU Classpath; see the file COPYING.  If not, write to the
-Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
-02111-1307 USA.
-
-Linking this library statically or dynamically with other modules is
-making a combined work based on this library.  Thus, the terms and
-conditions of the GNU General Public License cover the whole
-combination.
-
-As a special exception, the copyright holders of this library give you
-permission to link this library with independent modules to produce an
-executable, regardless of the license terms of these independent
-modules, and to copy and distribute the resulting executable under
-terms of your choice, provided that you also meet, for each linked
-independent module, the terms and conditions of the license of that
-module.  An independent module is a module which is not derived from
-or based on this library.  If you modify this library, you may extend
-this exception to your version of the library, but you are not
-obligated to do so.  If you do not wish to do so, delete this
-exception statement from your version. */
-
-// Included from Kawa 1.6.62 with permission of the author,
-// Per Bothner <per at bothner.com>.
-
-package gnu.java.math;
-
-/** This contains various low-level routines for unsigned bigints.
- * The interfaces match the mpn interfaces in gmp,
- * so it should be easy to replace them with fast native functions
- * that are trivial wrappers around the mpn_ functions in gmp
- * (at least on platforms that use 32-bit "limbs").
- */
-
-public class MPN
-{
-  /** Add x[0:size-1] and y, and write the size least
-   * significant words of the result to dest.
-   * Return carry, either 0 or 1.
-   * All values are unsigned.
-   * This is basically the same as gmp's mpn_add_1. */
-  public static int add_1 (int[] dest, int[] x, int size, int y)
-  {
-    long carry = (long) y & 0xffffffffL;
-    for (int i = 0;  i < size;  i++)
-      {
-	carry += ((long) x[i] & 0xffffffffL);
-	dest[i] = (int) carry;
-	carry >>= 32;
-      }
-    return (int) carry;
-  }
-
-  /** Add x[0:len-1] and y[0:len-1] and write the len least
-   * significant words of the result to dest[0:len-1].
-   * All words are treated as unsigned.
-   * @return the carry, either 0 or 1
-   * This function is basically the same as gmp's mpn_add_n.
-   */
-  public static int add_n (int dest[], int[] x, int[] y, int len)
-  {
-    long carry = 0;
-    for (int i = 0; i < len;  i++)
-      {
-	carry += ((long) x[i] & 0xffffffffL)
-	  + ((long) y[i] & 0xffffffffL);
-	dest[i] = (int) carry;
-	carry >>>= 32;
-      }
-    return (int) carry;
-  }
-
-  /** Subtract Y[0:size-1] from X[0:size-1], and write
-   * the size least significant words of the result to dest[0:size-1].
-   * Return borrow, either 0 or 1.
-   * This is basically the same as gmp's mpn_sub_n function.
-   */
-
-  public static int sub_n (int[] dest, int[] X, int[] Y, int size)
-  {
-    int cy = 0;
-    for (int i = 0;  i < size;  i++)
-      {
-	int y = Y[i];
-	int x = X[i];
-	y += cy;	/* add previous carry to subtrahend */
-	// Invert the high-order bit, because: (unsigned) X > (unsigned) Y
-	// iff: (int) (X^0x80000000) > (int) (Y^0x80000000).
-	cy = (y^0x80000000) < (cy^0x80000000) ? 1 : 0;
-	y = x - y;
-	cy += (y^0x80000000) > (x ^ 0x80000000) ? 1 : 0;
-	dest[i] = y;
-      }
-    return cy;
-  }
-
-  /** Multiply x[0:len-1] by y, and write the len least
-   * significant words of the product to dest[0:len-1].
-   * Return the most significant word of the product.
-   * All values are treated as if they were unsigned
-   * (i.e. masked with 0xffffffffL).
-   * OK if dest==x (not sure if this is guaranteed for mpn_mul_1).
-   * This function is basically the same as gmp's mpn_mul_1.
-   */
-
-  public static int mul_1 (int[] dest, int[] x, int len, int y)
-  {
-    long yword = (long) y & 0xffffffffL;
-    long carry = 0;
-    for (int j = 0;  j < len; j++)
-      {
-        carry += ((long) x[j] & 0xffffffffL) * yword;
-        dest[j] = (int) carry;
-        carry >>>= 32;
-      }
-    return (int) carry;
-  }
-
-  /**
-   * Multiply x[0:xlen-1] and y[0:ylen-1], and
-   * write the result to dest[0:xlen+ylen-1].
-   * The destination has to have space for xlen+ylen words,
-   * even if the result might be one limb smaller.
-   * This function requires that xlen >= ylen.
-   * The destination must be distinct from either input operands.
-   * All operands are unsigned.
-   * This function is basically the same gmp's mpn_mul. */
-
-  public static void mul (int[] dest,
-			  int[] x, int xlen,
-			  int[] y, int ylen)
-  {
-    dest[xlen] = MPN.mul_1 (dest, x, xlen, y[0]);
-
-    for (int i = 1;  i < ylen; i++)
-      {
-	long yword = (long) y[i] & 0xffffffffL;
-	long carry = 0;
-	for (int j = 0;  j < xlen; j++)
-	  {
-	    carry += ((long) x[j] & 0xffffffffL) * yword
-	      + ((long) dest[i+j] & 0xffffffffL);
-	    dest[i+j] = (int) carry;
-	    carry >>>= 32;
-	  }
-	dest[i+xlen] = (int) carry;
-      }
-  }
-
-  /* Divide (unsigned long) N by (unsigned int) D.
-   * Returns (remainder << 32)+(unsigned int)(quotient).
-   * Assumes (unsigned int)(N>>32) < (unsigned int)D.
-   * Code transcribed from gmp-2.0's mpn_udiv_w_sdiv function.
-   */
-  public static long udiv_qrnnd (long N, int D)
-  {
-    long q, r;
-    long a1 = N >>> 32;
-    long a0 = N & 0xffffffffL;
-    if (D >= 0)
-      {
-	if (a1 < ((D - a1 - (a0 >>> 31)) & 0xffffffffL))
-	  {
-	    /* dividend, divisor, and quotient are nonnegative */
-	    q = N / D;
-	    r = N % D;
-	  }
-	else
-	  {
-	    /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d */
-	    long c = N - ((long) D << 31);
-	    /* Divide (c1*2^32 + c0) by d */
-	    q = c / D;
-	    r = c % D;
-	    /* Add 2^31 to quotient */
-	    q += 1 << 31;
-	  }
-      }
-    else
-      {
-	long b1 = D >>> 1;	/* d/2, between 2^30 and 2^31 - 1 */
-	//long c1 = (a1 >> 1); /* A/2 */
-	//int c0 = (a1 << 31) + (a0 >> 1);
-	long c = N >>> 1;
-	if (a1 < b1 || (a1 >> 1) < b1)
-	  {
-	    if (a1 < b1)
-	      {
-		q = c / b1;
-		r = c % b1;
-	      }
-	    else /* c1 < b1, so 2^31 <= (A/2)/b1 < 2^32 */
-	      {
-		c = ~(c - (b1 << 32));
-		q = c / b1;  /* (A/2) / (d/2) */
-		r = c % b1;
-		q = (~q) & 0xffffffffL;    /* (A/2)/b1 */
-		r = (b1 - 1) - r; /* r < b1 => new r >= 0 */
-	      }
-	    r = 2 * r + (a0 & 1);
-	    if ((D & 1) != 0)
-	      {
-		if (r >= q) {
-		        r = r - q;
-		} else if (q - r <= ((long) D & 0xffffffffL)) {
-                       r = r - q + D;
-        		q -= 1;
-		} else {
-                       r = r - q + D + D;
-        		q -= 2;
-		}
-	      }
-	  }
-	else				/* Implies c1 = b1 */
-	  {				/* Hence a1 = d - 1 = 2*b1 - 1 */
-	    if (a0 >= ((long)(-D) & 0xffffffffL))
-	      {
-		q = -1;
-	        r = a0 + D;
- 	      }
-	    else
-	      {
-		q = -2;
-	        r = a0 + D + D;
-	      }
-	  }
-      }
-
-    return (r << 32) | (q & 0xFFFFFFFFl);
-  }
-
-    /** Divide divident[0:len-1] by (unsigned int)divisor.
-     * Write result into quotient[0:len-1.
-     * Return the one-word (unsigned) remainder.
-     * OK for quotient==dividend.
-     */
-
-  public static int divmod_1 (int[] quotient, int[] dividend,
-			      int len, int divisor)
-  {
-    int i = len - 1;
-    long r = dividend[i];
-    if ((r & 0xffffffffL) >= ((long)divisor & 0xffffffffL))
-      r = 0;
-    else
-      {
-	quotient[i--] = 0;
-	r <<= 32;
-      }
-
-    for (;  i >= 0;  i--)
-      {
-	int n0 = dividend[i];
-	r = (r & ~0xffffffffL) | (n0 & 0xffffffffL);
-	r = udiv_qrnnd (r, divisor);
-	quotient[i] = (int) r;
-      }
-    return (int)(r >> 32);
-  }
-
-  /* Subtract x[0:len-1]*y from dest[offset:offset+len-1].
-   * All values are treated as if unsigned.
-   * @return the most significant word of
-   * the product, minus borrow-out from the subtraction.
-   */
-  public static int submul_1 (int[] dest, int offset, int[] x, int len, int y)
-  {
-    long yl = (long) y & 0xffffffffL;
-    int carry = 0;
-    int j = 0;
-    do
-      {
-	long prod = ((long) x[j] & 0xffffffffL) * yl;
-	int prod_low = (int) prod;
-	int prod_high = (int) (prod >> 32);
-	prod_low += carry;
-	// Invert the high-order bit, because: (unsigned) X > (unsigned) Y
-	// iff: (int) (X^0x80000000) > (int) (Y^0x80000000).
-	carry = ((prod_low ^ 0x80000000) < (carry ^ 0x80000000) ? 1 : 0)
-	  + prod_high;
-	int x_j = dest[offset+j];
-	prod_low = x_j - prod_low;
-	if ((prod_low ^ 0x80000000) > (x_j ^ 0x80000000))
-	  carry++;
-	dest[offset+j] = prod_low;
-      }
-    while (++j < len);
-    return carry;
-  }
-
-  /** Divide zds[0:nx] by y[0:ny-1].
-   * The remainder ends up in zds[0:ny-1].
-   * The quotient ends up in zds[ny:nx].
-   * Assumes:  nx>ny.
-   * (int)y[ny-1] < 0  (i.e. most significant bit set)
-   */
-
-  public static void divide (int[] zds, int nx, int[] y, int ny)
-  {
-    // This is basically Knuth's formulation of the classical algorithm,
-    // but translated from in scm_divbigbig in Jaffar's SCM implementation.
-
-    // Correspondance with Knuth's notation:
-    // Knuth's u[0:m+n] == zds[nx:0].
-    // Knuth's v[1:n] == y[ny-1:0]
-    // Knuth's n == ny.
-    // Knuth's m == nx-ny.
-    // Our nx == Knuth's m+n.
-
-    // Could be re-implemented using gmp's mpn_divrem:
-    // zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny).
-
-    int j = nx;
-    do
-      {                          // loop over digits of quotient
-	// Knuth's j == our nx-j.
-	// Knuth's u[j:j+n] == our zds[j:j-ny].
-	int qhat;  // treated as unsigned
-	if (zds[j]==y[ny-1])
-	  qhat = -1;  // 0xffffffff
-	else
-	  {
-	    long w = (((long)(zds[j])) << 32) + ((long)zds[j-1] & 0xffffffffL);
-	    qhat = (int) udiv_qrnnd (w, y[ny-1]);
-	  }
-	if (qhat != 0)
-	  {
-	    int borrow = submul_1 (zds, j - ny, y, ny, qhat);
-	    int save = zds[j];
-	    long num = ((long)save&0xffffffffL) - ((long)borrow&0xffffffffL);
-            while (num != 0)
-	      {
-		qhat--;
-		long carry = 0;
-		for (int i = 0;  i < ny; i++)
-		  {
-		    carry += ((long) zds[j-ny+i] & 0xffffffffL)
-		      + ((long) y[i] & 0xffffffffL);
-		    zds[j-ny+i] = (int) carry;
-		    carry >>>= 32;
-		  }
-		zds[j] += carry;
-		num = carry - 1;
-	      }
-	  }
-	zds[j] = qhat;
-      } while (--j >= ny);
-  }
-
-  /** Number of digits in the conversion base that always fits in a word.
-   * For example, for base 10 this is 9, since 10**9 is the
-   * largest number that fits into a words (assuming 32-bit words).
-   * This is the same as gmp's __mp_bases[radix].chars_per_limb.
-   * @param radix the base
-   * @return number of digits */
-  public static int chars_per_word (int radix)
-  {
-    if (radix < 10)
-      {
-	if (radix < 8)
-	  {
-	    if (radix <= 2)
-	      return 32;
-	    else if (radix == 3)
-	      return 20;
-	    else if (radix == 4)
-	      return 16;
-	    else
-	      return 18 - radix;
-	  }
-	else
-	  return 10;
-      }
-    else if (radix < 12)
-      return 9;
-    else if (radix <= 16)
-      return 8;
-    else if (radix <= 23)
-      return 7;
-    else if (radix <= 40)
-      return 6;
-    // The following are conservative, but we don't care.
-    else if (radix <= 256)
-      return 4;
-    else
-      return 1;
-  }
-
-  /** Count the number of leading zero bits in an int. */
-  public static int count_leading_zeros (int i)
-  {
-    if (i == 0)
-      return 32;
-    int count = 0;
-    for (int k = 16;  k > 0;  k = k >> 1) {
-      int j = i >>> k;
-      if (j == 0)
-	count += k;
-      else
-	i = j;
-    }
-    return count;
-  }
-
-  public static int set_str (int dest[], byte[] str, int str_len, int base)
-  {
-    int size = 0;
-    if ((base & (base - 1)) == 0)
-      {
-	// The base is a power of 2.  Read the input string from
-	// least to most significant character/digit.  */
-
-	int next_bitpos = 0;
-	int bits_per_indigit = 0;
-	for (int i = base; (i >>= 1) != 0; ) bits_per_indigit++;
-	int res_digit = 0;
-
-	for (int i = str_len;  --i >= 0; )
-	  {
-	    int inp_digit = str[i];
-	    res_digit |= inp_digit << next_bitpos;
-	    next_bitpos += bits_per_indigit;
-	    if (next_bitpos >= 32)
-	      {
-		dest[size++] = res_digit;
-		next_bitpos -= 32;
-		res_digit = inp_digit >> (bits_per_indigit - next_bitpos);
-	      }
-	  }
-
-	if (res_digit != 0)
-	  dest[size++] = res_digit;
-      }
-    else
-      {
-	// General case.  The base is not a power of 2.
-	int indigits_per_limb = MPN.chars_per_word (base);
-	int str_pos = 0;
-
-	while (str_pos < str_len)
-	  {
-	    int chunk = str_len - str_pos;
-	    if (chunk > indigits_per_limb)
-	      chunk = indigits_per_limb;
-	    int res_digit = str[str_pos++];
-	    int big_base = base;
-
-	    while (--chunk > 0)
-	      {
-		res_digit = res_digit * base + str[str_pos++];
-		big_base *= base;
-	      }
-
-	    int cy_limb;
-	    if (size == 0)
-	      cy_limb = res_digit;
-	    else
-	      {
-		cy_limb = MPN.mul_1 (dest, dest, size, big_base);
-		cy_limb += MPN.add_1 (dest, dest, size, res_digit);
-	      }
-	    if (cy_limb != 0)
-	      dest[size++] = cy_limb;
-	  }
-       }
-    return size;
-  }
-
-  /** Compare x[0:size-1] with y[0:size-1], treating them as unsigned integers.
-   * @result -1, 0, or 1 depending on if x<y, x==y, or x>y.
-   * This is basically the same as gmp's mpn_cmp function.
-   */
-  public static int cmp (int[] x, int[] y, int size)
-  {
-    while (--size >= 0)
-      {
-	int x_word = x[size];
-	int y_word = y[size];
-	if (x_word != y_word)
-	  {
-	    // Invert the high-order bit, because:
-	    // (unsigned) X > (unsigned) Y iff
-	    // (int) (X^0x80000000) > (int) (Y^0x80000000).
-	    return (x_word ^ 0x80000000) > (y_word ^0x80000000) ? 1 : -1;
-	  }
-      }
-    return 0;
-  }
-
-  /** Compare x[0:xlen-1] with y[0:ylen-1], treating them as unsigned integers.
-   * @result -1, 0, or 1 depending on if x<y, x==y, or x>y.
-   */
-  public static int cmp (int[] x, int xlen, int[] y, int ylen)
-  {
-    return xlen > ylen ? 1 : xlen < ylen ? -1 : cmp (x, y, xlen);
-  }
-
-  /* Shift x[x_start:x_start+len-1] count bits to the "right"
-   * (i.e. divide by 2**count).
-   * Store the len least significant words of the result at dest.
-   * The bits shifted out to the right are returned.
-   * OK if dest==x.
-   * Assumes: 0 < count < 32
-   */
-
-  public static int rshift (int[] dest, int[] x, int x_start,
-			    int len, int count)
-  {
-    int count_2 = 32 - count;
-    int low_word = x[x_start];
-    int retval = low_word << count_2;
-    int i = 1;
-    for (; i < len;  i++)
-      {
-	int high_word = x[x_start+i];
-	dest[i-1] = (low_word >>> count) | (high_word << count_2);
-	low_word = high_word;
-      }
-    dest[i-1] = low_word >>> count;
-    return retval;
-  }
-
-  /* Shift x[x_start:x_start+len-1] count bits to the "right"
-   * (i.e. divide by 2**count).
-   * Store the len least significant words of the result at dest.
-   * OK if dest==x.
-   * Assumes: 0 <= count < 32
-   * Same as rshift, but handles count==0 (and has no return value).
-   */
-  public static void rshift0 (int[] dest, int[] x, int x_start,
-			      int len, int count)
-  {
-    if (count > 0)
-      rshift(dest, x, x_start, len, count);
-    else
-      for (int i = 0;  i < len;  i++)
-	dest[i] = x[i + x_start];
-  }
-
-  /** Return the long-truncated value of right shifting.
-  * @param x a two's-complement "bignum"
-  * @param len the number of significant words in x
-  * @param count the shift count
-  * @return (long)(x[0..len-1] >> count).
-  */
-  public static long rshift_long (int[] x, int len, int count)
-  {
-    int wordno = count >> 5;
-    count &= 31;
-    int sign = x[len-1] < 0 ? -1 : 0;
-    int w0 = wordno >= len ? sign : x[wordno];
-    wordno++;
-    int w1 = wordno >= len ? sign : x[wordno];
-    if (count != 0)
-      {
-	wordno++;
-	int w2 = wordno >= len ? sign : x[wordno];
-	w0 = (w0 >>> count) | (w1 << (32-count));
-	w1 = (w1 >>> count) | (w2 << (32-count));
-      }
-    return ((long)w1 << 32) | ((long)w0 & 0xffffffffL);
-  }
-
-  /* Shift x[0:len-1] left by count bits, and store the len least
-   * significant words of the result in dest[d_offset:d_offset+len-1].
-   * Return the bits shifted out from the most significant digit.
-   * Assumes 0 < count < 32.
-   * OK if dest==x.
-   */
-
-  public static int lshift (int[] dest, int d_offset,
-			    int[] x, int len, int count)
-  {
-    int count_2 = 32 - count;
-    int i = len - 1;
-    int high_word = x[i];
-    int retval = high_word >>> count_2;
-    d_offset++;
-    while (--i >= 0)
-      {
-	int low_word = x[i];
-	dest[d_offset+i] = (high_word << count) | (low_word >>> count_2);
-	high_word = low_word;
-      }
-    dest[d_offset+i] = high_word << count;
-    return retval;
-  }
-
-  /** Return least i such that word&(1<<i). Assumes word!=0. */
-
-  public static int findLowestBit (int word)
-  {
-    int i = 0;
-    while ((word & 0xF) == 0)
-      {
-	word >>= 4;
-	i += 4;
-      }
-    if ((word & 3) == 0)
-      {
-	word >>= 2;
-	i += 2;
-      }
-    if ((word & 1) == 0)
-      i += 1;
-    return i;
-  }
-
-  /** Return least i such that words & (1<<i). Assumes there is such an i. */
-
-  public static int findLowestBit (int[] words)
-  {
-    for (int i = 0;  ; i++)
-      {
-	if (words[i] != 0)
-	  return 32 * i + findLowestBit (words[i]);
-      }
-  }
-
-  /** Calculate Greatest Common Divisior of x[0:len-1] and y[0:len-1].
-    * Assumes both arguments are non-zero.
-    * Leaves result in x, and returns len of result.
-    * Also destroys y (actually sets it to a copy of the result). */
-
-  public static int gcd (int[] x, int[] y, int len)
-  {
-    int i, word;
-    // Find sh such that both x and y are divisible by 2**sh.
-    for (i = 0; ; i++)
-      {
-	word = x[i] | y[i];
-	if (word != 0)
-	  {
-	    // Must terminate, since x and y are non-zero.
-	    break;
-	  }
-      }
-    int initShiftWords = i;
-    int initShiftBits = findLowestBit (word);
-    // Logically: sh = initShiftWords * 32 + initShiftBits
-
-    // Temporarily devide both x and y by 2**sh.
-    len -= initShiftWords;
-    MPN.rshift0 (x, x, initShiftWords, len, initShiftBits);
-    MPN.rshift0 (y, y, initShiftWords, len, initShiftBits);
-
-    int[] odd_arg; /* One of x or y which is odd. */
-    int[] other_arg; /* The other one can be even or odd. */
-    if ((x[0] & 1) != 0)
-      {
-	odd_arg = x;
-	other_arg = y;
-      }
-    else
-      {
-	odd_arg = y;
-	other_arg = x;
-      }
-
-    for (;;)
-      {
-	// Shift other_arg until it is odd; this doesn't
-	// affect the gcd, since we divide by 2**k, which does not
-	// divide odd_arg.
-	for (i = 0; other_arg[i] == 0; ) i++;
-	if (i > 0)
-	  {
-	    int j;
-	    for (j = 0; j < len-i; j++)
-		other_arg[j] = other_arg[j+i];
-	    for ( ; j < len; j++)
-	      other_arg[j] = 0;
-	  }
-	i = findLowestBit(other_arg[0]);
-	if (i > 0)
-	  MPN.rshift (other_arg, other_arg, 0, len, i);
-
-	// Now both odd_arg and other_arg are odd.
-
-	// Subtract the smaller from the larger.
-	// This does not change the result, since gcd(a-b,b)==gcd(a,b).
-	i = MPN.cmp(odd_arg, other_arg, len);
-	if (i == 0)
-	    break;
-	if (i > 0)
-	  { // odd_arg > other_arg
-	    MPN.sub_n (odd_arg, odd_arg, other_arg, len);
-	    // Now odd_arg is even, so swap with other_arg;
-	    int[] tmp = odd_arg; odd_arg = other_arg; other_arg = tmp;
-	  }
-	else
-	  { // other_arg > odd_arg
-	    MPN.sub_n (other_arg, other_arg, odd_arg, len);
-	}
-	while (odd_arg[len-1] == 0 && other_arg[len-1] == 0)
-	  len--;
-    }
-    if (initShiftWords + initShiftBits > 0)
-      {
-	if (initShiftBits > 0)
-	  {
-	    int sh_out = MPN.lshift (x, initShiftWords, x, len, initShiftBits);
-	    if (sh_out != 0)
-	      x[(len++)+initShiftWords] = sh_out;
-	  }
-	else
-	  {
-	    for (i = len; --i >= 0;)
-	      x[i+initShiftWords] = x[i];
-	  }
-	for (i = initShiftWords;  --i >= 0; )
-	  x[i] = 0;
-	len += initShiftWords;
-      }
-    return len;
-  }
-
-  public static int intLength (int i)
-  {
-    return 32 - count_leading_zeros (i < 0 ? ~i : i);
-  }
-
-  /** Calcaulte the Common Lisp "integer-length" function.
-   * Assumes input is canonicalized:  len==BigInteger.wordsNeeded(words,len) */
-  public static int intLength (int[] words, int len)
-  {
-    len--;
-    return intLength (words[len]) + 32 * len;
-  }
-
-  /* DEBUGGING:
-  public static void dprint (BigInteger x)
-  {
-    if (x.words == null)
-      System.err.print(Long.toString((long) x.ival & 0xffffffffL, 16));
-    else
-      dprint (System.err, x.words, x.ival);
-  }
-  public static void dprint (int[] x) { dprint (System.err, x, x.length); }
-  public static void dprint (int[] x, int len) { dprint (System.err, x, len); }
-  public static void dprint (java.io.PrintStream ps, int[] x, int len)
-  {
-    ps.print('(');
-    for (int i = 0;  i < len; i++)
-      {
-	if (i > 0)
-	  ps.print (' ');
-	ps.print ("#x" + Long.toString ((long) x[i] & 0xffffffffL, 16));
-      }
-    ps.print(')');
-  }
-  */
-}
===================================================================
Checking out kaffe/libraries/javalib/pure-java/math/java/math/BigDecimal.java
RCS:  /home/cvs/kaffe/kaffe/libraries/javalib/pure-java/math/java/math/Attic/BigDecimal.java,v
VERS: 1.4
***************
--- kaffe/libraries/javalib/pure-java/math/java/math/BigDecimal.java	Sun Jul 18 18:38:14 2004
+++ /dev/null	Sun Aug  4 19:57:58 2002
@@ -1,520 +0,0 @@
-/* java.math.BigDecimal -- Arbitrary precision decimals.
-   Copyright (C) 1999, 2000, 2001, 2003 Free Software Foundation, Inc.
-
-This file is part of GNU Classpath.
-
-GNU Classpath is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
- 
-GNU Classpath is distributed in the hope that it will be useful, but
-WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU Classpath; see the file COPYING.  If not, write to the
-Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
-02111-1307 USA.
-
-Linking this library statically or dynamically with other modules is
-making a combined work based on this library.  Thus, the terms and
-conditions of the GNU General Public License cover the whole
-combination.
-
-As a special exception, the copyright holders of this library give you
-permission to link this library with independent modules to produce an
-executable, regardless of the license terms of these independent
-modules, and to copy and distribute the resulting executable under
-terms of your choice, provided that you also meet, for each linked
-independent module, the terms and conditions of the license of that
-module.  An independent module is a module which is not derived from
-or based on this library.  If you modify this library, you may extend
-this exception to your version of the library, but you are not
-obligated to do so.  If you do not wish to do so, delete this
-exception statement from your version. */
-
-package java.math;
-
-import java.math.BigInteger;
-
-public class BigDecimal extends Number implements Comparable
-{
-  private BigInteger intVal;
-  private int scale;
-  private static final long serialVersionUID = 6108874887143696463L;
-
-  private final static BigDecimal ZERO = 
-    new BigDecimal (BigInteger.valueOf (0), 0);
-
-  private final static BigDecimal ONE = 
-    new BigDecimal (BigInteger.valueOf (1), 0);
-
-  public final static int ROUND_UP = 0;
-  public final static int ROUND_DOWN = 1;
-  public final static int ROUND_CEILING = 2;
-  public final static int ROUND_FLOOR = 3;
-  public final static int ROUND_HALF_UP = 4;
-  public final static int ROUND_HALF_DOWN = 5;
-  public final static int ROUND_HALF_EVEN = 6;
-  public final static int ROUND_UNNECESSARY = 7;
-
-  public BigDecimal (BigInteger num) 
-  {
-    this (num, 0);
-  }
-
-  public BigDecimal (BigInteger num, int scale) throws NumberFormatException 
-  {
-    if (scale < 0) 
-      throw new NumberFormatException ("scale of " + scale + " is < 0");
-    this.intVal = num;
-    this.scale = scale;
-  }
-
-  public BigDecimal (double num) throws NumberFormatException 
-  {
-    if (Double.isInfinite (num) || Double.isNaN (num))
-      throw new NumberFormatException ("invalid argument: " + num);
-    // Note we can't convert NUM to a String and then use the
-    // String-based constructor.  The BigDecimal documentation makes
-    // it clear that the two constructors work differently.
-
-    final int mantissaBits = 52;
-    final int exponentBits = 11;
-    final long mantMask = (1L << mantissaBits) - 1;
-    final long expMask = (1L << exponentBits) - 1;
-
-    long bits = Double.doubleToLongBits (num);
-    long mantissa = bits & mantMask;
-    long exponent = (bits >>> mantissaBits) & expMask;
-    boolean denormal = exponent == 0;
-    // Correct the exponent for the bias.
-    exponent -= denormal ? 1022 : 1023;
-    // Now correct the exponent to account for the bits to the right
-    // of the decimal.
-    exponent -= mantissaBits;
-    // Ordinary numbers have an implied leading `1' bit.
-    if (! denormal)
-      mantissa |= (1L << mantissaBits);
-
-    // Shave off factors of 10.
-    while (exponent < 0 && (mantissa & 1) == 0)
-      {
-	++exponent;
-	mantissa >>= 1;
-      }
-
-    intVal = BigInteger.valueOf (bits < 0 ? - mantissa : mantissa);
-    if (exponent < 0)
-      {
-	// We have MANTISSA * 2 ^ (EXPONENT).
-	// Since (1/2)^N == 5^N * 10^-N we can easily convert this
-	// into a power of 10.
-	scale = (int) (- exponent);
-	BigInteger mult = BigInteger.valueOf (5).pow (scale);
-	intVal = intVal.multiply (mult);
-      }
-    else
-      {
-	intVal = intVal.shiftLeft ((int) exponent);
-	scale = 0;
-      }
-  }
-
-  public BigDecimal (String num) throws NumberFormatException 
-  {
-    int len = num.length();
-    int start = 0, point = 0;
-    int dot = -1;
-    boolean negative = false;
-    if (num.charAt(0) == '+')
-      {
-	++start;
-	++point;
-      }
-    else if (num.charAt(0) == '-')
-      {
-	++start;
-	++point;
-	negative = true;
-      }
-
-    while (point < len)
-      {
-	char c = num.charAt (point);
-	if (c == '.')
-	  {
-	    if (dot >= 0)
-	      throw new NumberFormatException ("multiple `.'s in number");
-	    dot = point;
-	  }
-	else if (c == 'e' || c == 'E')
-	  break;
-	else if (Character.digit (c, 10) < 0)
-	  throw new NumberFormatException ("unrecognized character: " + c);
-	++point;
-      }
-
-    String val;
-    if (dot >= 0)
-      {
-	val = num.substring (start, dot) + num.substring (dot + 1, point);
-	scale = point - 1 - dot;
-      }
-    else
-      {
-	val = num.substring (start, point);
-	scale = 0;
-      }
-    if (val.length () == 0)
-      throw new NumberFormatException ("no digits seen");
-
-    if (negative)
-      val = "-" + val;
-    intVal = new BigInteger (val);
-
-    // Now parse exponent.
-    if (point < len)
-      {
-        point++;
-        if (num.charAt(point) == '+')
-          point++;
-
-        if (point >= len )
-          throw new NumberFormatException ("no exponent following e or E");
-	
-        try 
-	  {
-	    int exp = Integer.parseInt (num.substring (point));
-	    exp -= scale;
-	    if (signum () == 0)
-	      scale = 0;
-	    else if (exp > 0)
-	      {
-		intVal = intVal.multiply (BigInteger.valueOf (10).pow (exp));
-		scale = 0;
-	      }
-	    else
-	      scale = - exp;
-	  }
-        catch (NumberFormatException ex) 
-	  {

*** Patch too long, truncated ***




More information about the kaffe mailing list