[kaffe] CVS kaffe (dalibor): Resynced with GNU Classpath
Kaffe CVS
Kaffe Mailing List <kaffe@kaffe.org>
Thu Jan 8 10:27:02 2004
PatchSet 4299
Date: 2004/01/08 18:06:15
Author: dalibor
Branch: HEAD
Tag: (none)
Log:
Resynced with GNU Classpath
2004-01-08 Dalibor Topic <robilad@kaffe.org>
Resynced with GNU Classpath.
2004-01-05 Sascha Brawer <brawer@dandelis.ch>
Fix for Classpath bug #6095
Thanks to Brian Gough <bjg@network-theory.com>
* java/awt/geom/CubicCurve2D.java (solveCubic): Implemented.
* java/awt/geom/QuadCurve2D.java (solveQuadratic): Re-written.
Members:
ChangeLog:1.1886->1.1887
libraries/javalib/java/awt/geom/CubicCurve2D.java:1.3->1.4
libraries/javalib/java/awt/geom/QuadCurve2D.java:1.4->1.5
Index: kaffe/ChangeLog
diff -u kaffe/ChangeLog:1.1886 kaffe/ChangeLog:1.1887
--- kaffe/ChangeLog:1.1886 Thu Jan 8 17:55:55 2004
+++ kaffe/ChangeLog Thu Jan 8 18:06:15 2004
@@ -2,6 +2,17 @@
Resynced with GNU Classpath.
+ 2004-01-05 Sascha Brawer <brawer@dandelis.ch>
+
+ Fix for Classpath bug #6095
+ Thanks to Brian Gough <bjg@network-theory.com>
+ * java/awt/geom/CubicCurve2D.java (solveCubic): Implemented.
+ * java/awt/geom/QuadCurve2D.java (solveQuadratic): Re-written.
+
+2004-01-08 Dalibor Topic <robilad@kaffe.org>
+
+ Resynced with GNU Classpath.
+
2004-01-04 Michael Koch <konqueror@gmx.de>
* gnu/java/net/protocol/jar/Connection.java
Index: kaffe/libraries/javalib/java/awt/geom/CubicCurve2D.java
diff -u kaffe/libraries/javalib/java/awt/geom/CubicCurve2D.java:1.3 kaffe/libraries/javalib/java/awt/geom/CubicCurve2D.java:1.4
--- kaffe/libraries/javalib/java/awt/geom/CubicCurve2D.java:1.3 Sat Oct 25 18:30:22 2003
+++ kaffe/libraries/javalib/java/awt/geom/CubicCurve2D.java Thu Jan 8 18:06:17 2004
@@ -624,17 +624,115 @@
}
+ /**
+ * Finds the non-complex roots of a cubic equation, placing the
+ * results into the same array as the equation coefficients. The
+ * following equation is being solved:
+ *
+ * <blockquote><code>eqn[3]</code> · <i>x</i><sup>3</sup>
+ * + <code>eqn[2]</code> · <i>x</i><sup>2</sup>
+ * + <code>eqn[1]</code> · <i>x</i>
+ * + <code>eqn[0]</code>
+ * = 0
+ * </blockquote>
+ *
+ * <p>For some background about solving cubic equations, see the
+ * article <a
+ * href="http://planetmath.org/encyclopedia/CubicFormula.html"
+ * >“Cubic Formula”</a> in <a
+ * href="http://planetmath.org/" >PlanetMath</a>. For an extensive
+ * library of numerical algorithms written in the C programming
+ * language, see the <a href= "http://www.gnu.org/software/gsl/">GNU
+ * Scientific Library</a>, from which this implementation was
+ * adapted.
+ *
+ * @param eqn an array with the coefficients of the equation. When
+ * this procedure has returned, <code>eqn</code> will contain the
+ * non-complex solutions of the equation, in no particular order.
+ *
+ * @return the number of non-complex solutions. A result of 0
+ * indicates that the equation has no non-complex solutions. A
+ * result of -1 indicates that the equation is constant (i.e.,
+ * always or never zero).
+ *
+ * @see #solveCubic(double[], double[])
+ * @see QuadCurve2D#solveQuadratic(double[],double[])
+ *
+ * @author <a href="mailto:bjg@network-theory.com">Brian Gough</a>
+ * (original C implementation in the <a href=
+ * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
+ *
+ * @author <a href="mailto:brawer@dandelis.ch">Sascha Brawer</a>
+ * (adaptation to Java)
+ */
public static int solveCubic(double[] eqn)
{
return solveCubic(eqn, eqn);
}
+ /**
+ * Finds the non-complex roots of a cubic equation. The following
+ * equation is being solved:
+ *
+ * <blockquote><code>eqn[3]</code> · <i>x</i><sup>3</sup>
+ * + <code>eqn[2]</code> · <i>x</i><sup>2</sup>
+ * + <code>eqn[1]</code> · <i>x</i>
+ * + <code>eqn[0]</code>
+ * = 0
+ * </blockquote>
+ *
+ * <p>For some background about solving cubic equations, see the
+ * article <a
+ * href="http://planetmath.org/encyclopedia/CubicFormula.html"
+ * >“Cubic Formula”</a> in <a
+ * href="http://planetmath.org/" >PlanetMath</a>. For an extensive
+ * library of numerical algorithms written in the C programming
+ * language, see the <a href= "http://www.gnu.org/software/gsl/">GNU
+ * Scientific Library</a>, from which this implementation was
+ * adapted.
+ *
+ * @see QuadCurve2D#solveQuadratic(double[],double[])
+ *
+ * @param eqn an array with the coefficients of the equation.
+ *
+ * @param res an array into which the non-complex roots will be
+ * stored. The results may be in an arbitrary order. It is safe to
+ * pass the same array object reference for both <code>eqn</code>
+ * and <code>res</code>.
+ *
+ * @return the number of non-complex solutions. A result of 0
+ * indicates that the equation has no non-complex solutions. A
+ * result of -1 indicates that the equation is constant (i.e.,
+ * always or never zero).
+ *
+ * @author <a href="mailto:bjg@network-theory.com">Brian Gough</a>
+ * (original C implementation in the <a href=
+ * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
+ *
+ * @author <a href="mailto:brawer@dandelis.ch">Sascha Brawer</a>
+ * (adaptation to Java)
+ */
public static int solveCubic(double[] eqn, double[] res)
{
+ // Adapted from poly/solve_cubic.c in the GNU Scientific Library
+ // (GSL), revision 1.7 of 2003-07-26. For the original source, see
+ // http://www.gnu.org/software/gsl/
+ //
+ // Brian Gough, the author of that code, has granted the
+ // permission to use it in GNU Classpath under the GNU Classpath
+ // license, and has assigned the copyright to the Free Software
+ // Foundation.
+ //
+ // The Java implementation is very similar to the GSL code, but
+ // not a strict one-to-one copy. For example, GSL would sort the
+ // result.
+
double a, b, c, q, r, Q, R;
-
- double c3 = eqn[3];
+ double c3, Q3, R2, CR2, CQ3;
+
+ // If the cubic coefficient is zero, we have a quadratic equation.
+ c3 = eqn[3];
if (c3 == 0)
return QuadCurve2D.solveQuadratic(eqn, res);
@@ -644,7 +742,69 @@
a = eqn[2] / c3;
// We now need to solve x^3 + ax^2 + bx + c = 0.
- throw new Error("not implemented"); // FIXME
+ q = a * a - 3 * b;
+ r = 2 * a * a * a - 9 * a * b + 27 * c;
+
+ Q = q / 9;
+ R = r / 54;
+
+ Q3 = Q * Q * Q;
+ R2 = R * R;
+
+ CR2 = 729 * r * r;
+ CQ3 = 2916 * q * q * q;
+
+ if (R == 0 && Q == 0)
+ {
+ // The GNU Scientific Library would return three identical
+ // solutions in this case.
+ res[0] = -a/3;
+ return 1;
+ }
+
+ if (CR2 == CQ3)
+ {
+ /* this test is actually R2 == Q3, written in a form suitable
+ for exact computation with integers */
+
+ /* Due to finite precision some double roots may be missed, and
+ considered to be a pair of complex roots z = x +/- epsilon i
+ close to the real axis. */
+
+ double sqrtQ = Math.sqrt(Q);
+
+ if (R > 0)
+ {
+ res[0] = -2 * sqrtQ - a/3;
+ res[1] = sqrtQ - a/3;
+ }
+ else
+ {
+ res[0] = -sqrtQ - a/3;
+ res[1] = 2 * sqrtQ - a/3;
+ }
+ return 2;
+ }
+
+ if (CR2 < CQ3) /* equivalent to R2 < Q3 */
+ {
+ double sqrtQ = Math.sqrt(Q);
+ double sqrtQ3 = sqrtQ * sqrtQ * sqrtQ;
+ double theta = Math.acos(R / sqrtQ3);
+ double norm = -2 * sqrtQ;
+ res[0] = norm * Math.cos(theta / 3) - a / 3;
+ res[1] = norm * Math.cos((theta + 2.0 * Math.PI) / 3) - a/3;
+ res[2] = norm * Math.cos((theta - 2.0 * Math.PI) / 3) - a/3;
+
+ // The GNU Scientific Library sorts the results. We don't.
+ return 3;
+ }
+
+ double sgnR = (R >= 0 ? 1 : -1);
+ double A = -sgnR * Math.pow(Math.abs(R) + Math.sqrt(R2 - Q3), 1.0/3.0);
+ double B = Q / A ;
+ res[0] = A + B - a/3;
+ return 1;
}
Index: kaffe/libraries/javalib/java/awt/geom/QuadCurve2D.java
diff -u kaffe/libraries/javalib/java/awt/geom/QuadCurve2D.java:1.4 kaffe/libraries/javalib/java/awt/geom/QuadCurve2D.java:1.5
--- kaffe/libraries/javalib/java/awt/geom/QuadCurve2D.java:1.4 Sat Oct 25 18:30:22 2003
+++ kaffe/libraries/javalib/java/awt/geom/QuadCurve2D.java Thu Jan 8 18:06:17 2004
@@ -550,39 +550,157 @@
}
+ /**
+ * Finds the non-complex roots of a quadratic equation, placing the
+ * results into the same array as the equation coefficients. The
+ * following equation is being solved:
+ *
+ * <blockquote><code>eqn[2]</code> · <i>x</i><sup>2</sup>
+ * + <code>eqn[1]</code> · <i>x</i>
+ * + <code>eqn[0]</code>
+ * = 0
+ * </blockquote>
+ *
+ * <p>For some background about solving quadratic equations, see the
+ * article <a href=
+ * "http://planetmath.org/encyclopedia/QuadraticFormula.html"
+ * >“Quadratic Formula”</a> in <a href=
+ * "http://planetmath.org/">PlanetMath</a>. For an extensive library
+ * of numerical algorithms written in the C programming language,
+ * see the <a href="http://www.gnu.org/software/gsl/">GNU Scientific
+ * Library</a>.
+ *
+ * @see #solveQuadratic(double[], double[])
+ * @see CubicCurve2D#solveCubic(double[], double[])
+ *
+ * @param eqn an array with the coefficients of the equation. When
+ * this procedure has returned, <code>eqn</code> will contain the
+ * non-complex solutions of the equation, in no particular order.
+ *
+ * @return the number of non-complex solutions. A result of 0
+ * indicates that the equation has no non-complex solutions. A
+ * result of -1 indicates that the equation is constant (i.e.,
+ * always or never zero).
+ *
+ * @author <a href="mailto:bjg@network-theory.com">Brian Gough</a>
+ * (original C implementation in the <a href=
+ * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
+ *
+ * @author <a href="mailto:brawer@dandelis.ch">Sascha Brawer</a>
+ * (adaptation to Java)
+ */
public static int solveQuadratic(double[] eqn)
{
return solveQuadratic(eqn, eqn);
}
+ /**
+ * Finds the non-complex roots of a quadratic equation. The
+ * following equation is being solved:
+ *
+ * <blockquote><code>eqn[2]</code> · <i>x</i><sup>2</sup>
+ * + <code>eqn[1]</code> · <i>x</i>
+ * + <code>eqn[0]</code>
+ * = 0
+ * </blockquote>
+ *
+ * <p>For some background about solving quadratic equations, see the
+ * article <a href=
+ * "http://planetmath.org/encyclopedia/QuadraticFormula.html"
+ * >“Quadratic Formula”</a> in <a href=
+ * "http://planetmath.org/">PlanetMath</a>. For an extensive library
+ * of numerical algorithms written in the C programming language,
+ * see the <a href="http://www.gnu.org/software/gsl/">GNU Scientific
+ * Library</a>.
+ *
+ * @see CubicCurve2D#solveCubic(double[],double[])
+ *
+ * @param eqn an array with the coefficients of the equation.
+ *
+ * @param res an array into which the non-complex roots will be
+ * stored. The results may be in an arbitrary order. It is safe to
+ * pass the same array object reference for both <code>eqn</code>
+ * and <code>res</code>.
+ *
+ * @return the number of non-complex solutions. A result of 0
+ * indicates that the equation has no non-complex solutions. A
+ * result of -1 indicates that the equation is constant (i.e.,
+ * always or never zero).
+ *
+ * @author <a href="mailto:bjg@network-theory.com">Brian Gough</a>
+ * (original C implementation in the <a href=
+ * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
+ *
+ * @author <a href="mailto:brawer@dandelis.ch">Sascha Brawer</a>
+ * (adaptation to Java)
+ */
public static int solveQuadratic(double[] eqn, double[] res)
{
- double c = eqn[0];
- double b = eqn[1];
- double a = eqn[2];
+ // Taken from poly/solve_quadratic.c in the GNU Scientific Library
+ // (GSL), cvs revision 1.7 of 2003-07-26. For the original source,
+ // see http://www.gnu.org/software/gsl/
+ //
+ // Brian Gough, the author of that code, has granted the
+ // permission to use it in GNU Classpath under the GNU Classpath
+ // license, and has assigned the copyright to the Free Software
+ // Foundation.
+ //
+ // The Java implementation is very similar to the GSL code, but
+ // not a strict one-to-one copy. For example, GSL would sort the
+ // result.
+
+ double a, b, c, disc;
+
+ c = eqn[0];
+ b = eqn[1];
+ a = eqn[2];
+
+ // Check for linear or constant functions. This is not done by the
+ // GNU Scientific Library. Without this special check, we
+ // wouldn't return -1 for constant functions, and 2 instead of 1
+ // for linear functions.
if (a == 0)
{
if (b == 0)
return -1;
+
res[0] = -c / b;
return 1;
}
- c /= a;
- b /= a * 2;
- double det = Math.sqrt(b * b - c);
- if (det != det)
+
+ disc = b * b - 4 * a * c;
+
+ if (disc < 0)
return 0;
- // For fewer rounding errors, we calculate the two roots differently.
- if (b > 0)
+
+ if (disc == 0)
{
- res[0] = -b - det;
- res[1] = -c / (b + det);
+ // The GNU Scientific Library returns two identical results here.
+ // We just return one.
+ res[0] = -0.5 * b / a ;
+ return 1;
+ }
+
+ // disc > 0
+ if (b == 0)
+ {
+ double r;
+
+ r = Math.abs(0.5 * Math.sqrt(disc) / a);
+ res[0] = -r;
+ res[1] = r;
}
else
{
- res[0] = -c / (b - det);
- res[1] = -b + det;
+ double sgnb, temp;
+
+ sgnb = (b > 0 ? 1 : -1);
+ temp = -0.5 * (b + sgnb * Math.sqrt(disc));
+
+ // The GNU Scientific Library sorts the result here. We don't.
+ res[0] = temp / a;
+ res[1] = c / temp;
}
return 2;
}